Temperature and Frequency Dependence of the Surface Resistance in the Vortex State of Type-II Superconductors

Gaston Fischer and R.D. McConnell

Departemente de Physique, Université de Montréal, Montréal 101, Canada

and

P. Monceau

Centre de Recherche sur les Très Basses Températures, Centre National de la Recherche Scientifique, Grenoble, France

and

Kazumi Maki

Department of Physics, Tôhoku University, Sendai, Japan (Received 8 May 1970)

The temperature and frequency dependence of surface-resistance data obtained in the vortex state of superconducting Pb-In alloys are analyzed. Measurements near $H_{\rm c2}$ indicate the normalized slope ${\rm s}_2^1=(H_{\rm c2}/R_n)\,\partial R/\partial H\mid_H$ tends to go to zero as the critical temperature is approached. The data are accounted for qualitatively if the frequency dependence of the flux-flow conductivity (dynamical fluctuations) is retained in the expression for the microwave current. There is no exact quantitative agreement, and the possibility of a strong-coupling correction is suggested.

In a recent paper, 1 henceforth to be called I, we made a comparison between experimental surfaceresistance measurements near H_{c2} in type-II superconductors and the microscopic flux-flow theory.2 At low temperatures the agreement between theory and experiments was excellent, and the $\kappa_2(t)$ parameter deduced from the surface-resistance measurements agreed with magnetization data obtained from the same samples. Near T_c , however, systematic deviations were observed and attributed to dynamical fluctuations of the vortex structure. These fluctuations are contained in our flux-flow expression for the conductivity $\sigma_s(H,\omega)$, and if we retain the frequency dependence of σ_s in the calculation of the surface resistance $R(H, \omega)$, we can account for the deviations observed. It is the purpose of the present note to examine this claim in some detail.

For the microwave current \bar{j}_{ω} we found in I [Eq. (11)]

$$\vec{\mathbf{j}}_{\omega} = \left\{ -i\omega\sigma - \frac{2e^{2}\tau N}{m} \left[\Psi\left(\frac{1}{2} + \frac{i\omega}{2\pi T} + \rho\right) - \Psi\left(\frac{1}{2} + \rho\right) \right] \frac{|\Delta(\vec{\mathbf{r}}, t)|^{2}}{2\epsilon_{0}(t) + i\omega} \right\} \vec{\mathbf{A}}_{\omega} .$$
(1)

If we derive the conductivity $\sigma_s(H,\omega)$ as in I but keeping terms in $\omega/\epsilon_0(t)$, we find

$$\sigma_s(H,\omega) = \sigma - \frac{\langle M \rangle}{DH} \frac{1}{1+ix}$$
, (2)

where $x = \omega/2\epsilon_0(t)$. An expression for the surface impedance Z near H_{c2} can then be derived as in I,

and from it we calculate the normalized slope $s_2^{\downarrow}(t, \omega)$, finding

$$s_2^1(t,\omega) = s_2^1(t,0) \frac{1+x(t)}{1+x^2(t)}$$
 (3)

 $s_{2}^{1}\left(t,0\right)$ was found in I and for our samples reduces

$$s_2^1(t,0) \approx 0.862 \left[\kappa_2(0)/\kappa_2(t)\right]^2$$
. (4)

The factor $f(x) = (1+x)/(1+x^2)$ describes the extra absorption arising from the dynamical fluctuations and has its most pronounced effect near T_c . In that region

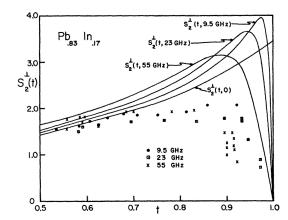


FIG. 1. Normalized slope $s_2^1(t)$ at H_{c2} of the surface resistance of a $\mathrm{Pb_{0.83}\,In_{0.17}}$ alloy at frequencies of 9.5, 23, and 55 GHz. The curves are calculated as per Eqs. (3) and (4) of the text.

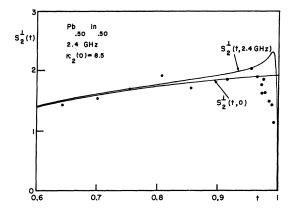


FIG. 2. Same as Fig. 1 for a $Pb_{0.50} In_{0.50}$ alloy at 2.4 GHz.

$$s_2^{\perp}(t,\omega) \mid_{t=1} - s_0^{\perp}(t,0) \frac{2\epsilon_0(t)}{\omega} + 0$$
 (5)

At low temperatures, $s_2^1(t,\omega) + s_2^1(t,0)$, which gives excellent agreement with experiments as reported in I

Figures 1-3 show the calculated and measured slopes $s_2^1(t,\omega)$ for our samples. The agreement is qualitatively good; but the measured data do not have the peak corresponding to the region 0 < x < 1, where f(x) > 1. In that region our theory predicts that the combined absorptions by fluxflow and fluctuations should be less than the absorption arising from flux-flow alone. This feature cannot be concluded from the experimental data. The increase in absorption [corresponding to a decrease of $s_2^1(t,\omega)$ in our figures] and its

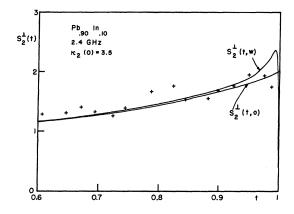


FIG. 3. Same as Fig. 1 for a $Pb_{0,90} In_{0,10}$ alloy at 2.4 GHz.

frequency dependence, however, are quite well reproduced when x>1. At present we do not know what prevents a better agreement between experiments and theory except to suggest that this may be a strong coupling effect, such that $x=\omega/2\epsilon_0(t)$ may have to be replaced by $x^*=\omega/2\epsilon_0^*(t)$, the asterisk indicating a renormalized quantity. With a ratio $\epsilon_0^*/\epsilon_0=2.2$ the agreement between measured and calculated $s_2^1(t)$ is very noticeably improved. This can be seen in Fig. 1 by comparing the experimental data at 23 GHz with the calculated curves at 23 and 55 GHz.

In conclusion, we have seen that the microscopic theory of flux-flow explains the observed surface resistance very well at low temperature and that the dynamical fluctuations give a qualitative fit to the observed behavior near $T_{\rm c}$.

 $^{^1}G.$ Fischer, R. D. Mc Connell, P. Monceau, and K. Maki, Phys. Rev. B $\underline{1},\ 2134\ (1970).$

²This theory is given in Ref. 1, together with full references to earlier work on flux-flow theory.

³J. le G. Gilchrist and P. Monceau, J. Phys. C <u>3</u>, 1399 (1970).

⁴The experimental data presented in this paper are the same as in I. We should like to acknowledge again that the 23- and 55-GHz data have been supplied by Dr. B. Rosenblum, Dr. J. I. Gittleman, and Dr. A. Rothwarf of the RCA Laboratories, Princeton, N. J.